
VECTORIZING
CONSUMER
ELECTRONIC GOODS

MICES
June 2024

Uncovering
The
Problem
Statement

//

Problem analysis of zero-results

SPELLING

 11%

SERIES

32%

SEMANTICS

24%

LANGUAGE

6%

ASSORTMENT

33%

Includes issues with spellings, wordbreaks and special chars that cannot be interpreted as of now

⁄ lenovo tap 11, i pad reparatur

Includes all queries where customers are searching for products with certain series numbers

⁄ Model number misspelled (dreame l20s ➔ dreame l20, hisense 43e61kt➔ hisense 43e6kt)

⁄ Specific model number/product not available (apple pencil kappe, playstation adventskalender)

⁄ Product/model defined differently in MM (john wick 1-4 ➔ john wick)

Includes all queries where the search engine lacks semantic understanding

⁄ Generic terms not appearing in product data e.g. for terms describing a size (klein, groß), a context (homeoffice), an

attribute (wireless, gebogen)

⁄ Different naming convention or synonyms (bodenwaagen ➔ körperwaagen, falschgeldstift ➔ Geldscheinprüfstift)

Includes all queries using non-latin alphabet or a different language, e.g. French

⁄ робот пилосос, tondeuse (trimmer)

⁄ Behaviour has changed over time

Search is reasonable but unable to return valid products

⁄ Either the products are not sold on MMS or lifecycle status of the product is not active

⁄ skyrim ps5, apple superdrive

//

How vector search could help
VS could solve following zero results query clusters:

- Spelling

- lenovo tap 11 ➔ lenovo tab 11, i pad reparatur ➔ ipad reparatur, iphone15➔ apple iphone 15

- Series

- john wick 1-4 ➔ john wick, dreame l20s ➔ dreame l20, hisense 43e61kt➔ hisense 43e6kt

- Semantic

- seagate wireless externe festplatte ➔ seagate wireless externe festplatte, vollkaffeeautomat ➔ kaffeeautomat

- Language

- tondeuse ➔ trimmer

Assortment:

- Cannot be solved by finding semantically similar product descriptions. Need to find alternative products.

- Is it temporary? Can it be solved by change in availability status or adding simple business rules?

- Head queries:

- ~ 20% of head queries with zero results are resolved during 7d rolling window.

- Long tail queries:

- ~ 100% of long tail queries are not solved from retrieval perspective.

First iteration
How suitable are public models?

//

Offline Evaluation
What’s a good query-product match?

- Text match

- Is every token equally important?

- Does it address semantic queries?

- Eg:

- Search query: spülmaschine 45 cm einbau [dishwasher 45 cm built-in]

- Product description: BOMANN GSPE 7415 VI Geschirrspüler

(Einbaugerät (Besteckkorb, 45,00 cm breit, 49 dB (A), E) [BOMANN

GSPE 7415 VI dishwasher (built-in appliance (cutlery basket, 45.00 cm

wide, 49 dB (A), E)]

- User implicit feedback

- Only popular products have implicit feedback

- We might not always have enough products to map

- What if the suggested product is not popular but still relevant? Does

showing smartphone accessories on a smartphone query completely

irrelevant?

- Category based result mapping

- Deduce query category based on query impressions and user implicit

feedback

- Match query category with product’s root category

- Search query: s23 case

- Matched product: caseonline case22 backcover sony xperia 1 iv blau

//

- How to choose a model?

- Several models for retail in English – not in German

- Multilingual

- Size X Pretraining

- Models

- sentence-transformers/all-MiniLM-L12-v2

- Sakil/sentence_similarity_semantic_search

- sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2

- Sahajtomar/German-semantic

- PM-AI/sts_paraphrase_xlm-roberta-base_de-en

- …

- Triplet training

- 70k, 550k, 750k

- Query – positive – negative

- Naïve offline negative selection (random, avoiding substrings)

Fine-tuning public models

//

- Models adapt quickly and do not improve anymore

- Unsuitable base vocabulary

- Much noise in the product descriptions

- Too unsophisticated negative selection

Limitations

['as', '##us', 'vivo', '##book', 'go', '15', 'e', '##51', '##0', '##ka', '-', 'e', '##j', '##22', '##5',
'##ws', ',', 'ink', '##l', '.', '1', 'ja', '##hr', 'microsoft', '365', 'single', ',', 'notebook', ',', 'mit',
'15', ',', '6', 'z', '##oll', 'display', ',', 'intel', '##®', 'ce', '##ler', '##on', '##®', ',', 'n', '##45',
'##00', 'pro', '##zes', '##sor', ',', '4', 'gb', 'ram', ',', '128', 'gb', 'em', '##mc', ',', 'intel', '##®',
'hd', 'graphics', ',', 'star', 'black', ',', 'windows', '11', 'home', 's', '-', 'mod', '##us', '(', '64',
'bit', ')']

Second iteration
Custom model and product descriptions

//

Product descriptions from user behaviour
- User queries are shorter in length

- ~90% of the queries have up to 4 tokens

- Avg. 10 tokens per product description

- redundant information, noise, 100s of structured features per product

Goal is to find important components of the product description to reduce noise

- Iteration 1:

- Find common terms between query and products

- Loss of information

- Product description might not always map to user queries

- Iteration 2:

- Entity recognition from user queries to identify important features searched by users.

- Use these features to build product description and model vocabulary

- Different patterns per product category

- Eg: prozessor-modell is important for Notebooks but not for smartphones while color might be important for smartphones but not for notebooks

- Dynamic number of features per product category

- Eg: drones can have up to 4 candidate features while notebooks might have up to 7 candidate features

- Some common features across all categories like brand name, product type

- Select top 4 features per product category

SEARCH QUERY: apple macbook m1

//

User behaviour based product descriptions

- Notebooks

- Candidate features:

- Processor model

- Series

- Brand

- Product type

- Front camera resolution

- Screen size diagonal

- Total available graphics memory

- Search query : laptop 17 zoll windows 11

- Product display name: ACER Aspire 5 (A517-53G-76EE) mit Tastaturbeleuchtung, Notebook, mit 17,3 Zoll Display, Intel® Core i7,i7-1260P Prozessor, 16

GB RAM, 512 GB SSD, NVIDIA GeForce RTX 2050, Steel Gray, Windows 11 Home (64 Bit)

- Generated product description : acer notebook 17.3 zoll core i7

//

Muhamed et al. (2023)

//

Training from scratch
- Masked Language Modeling

- Dynamic masking (during training)

- Query-product tuples

ipad tablets apple ipad [MASK] 64 gb 10.2 [MASK] space grau

//

How things can go wrong...
- Brutal negatives

▪ Create an in-memory index at the beginning of an epoch

▪ Take the highest-ranked unexpected products

- Small batch-size

Model over-adapts!

//

Fine-tuning with online negatives (Schroff et al., 2015)
- Creation of online negatives

▪ Create a batch of anchor-positive tuples (query + relevant product)

▪ Create embeddings for all queries and products in the batch

▪ A semi-hard negative is farer away from the query than the positive, but still close

▪ A hard negative is closer to the query than the positive

- Start soft with semi-hard negatives, continue with hard negatives

- Model variations without significant impact (vocab size, model size)

Third iteration
Striving for the MVP

//

Integrating business logic and user behaviour for product
descriptions

Shortcomings from user behaviour approach:
- Product catalogue not well maintained (missing field values/ too long descriptions)
- Feature disambiguation

- Hand crafted rules to extract feature information (processor models: m-series vs M1, smartphone model names, drone model series, etc)
- Redundant features (like maximum storage capacity, delivery information, package information, etc)

Solution: Integrate business knowledge
- Catalogue managers have set of rules to build product descriptions from product features based on business knowledge

- Consider global feature importance on search result page

Business features User behaviour-based features Product description

- Name
- Color
- Category
- Brand
- Storage capacity
- Dual sim

- Series
- Color
- Model
- Brand
- Storage capacity
- Mobile radio standard
- Model year

- User behaviour-based product
description:
 apple iphone 14 pro 128gb space

schwarz

- Integrated approach:
 Apple iphone 14 pro 128 gb space

schwarz dual sim

//

Leanest way of running vector search in production

- Base image

- Code + Dependencies

Scheduled Job
- Load model
- Create Embeddings
- Create in-memory index
- Dump index - Code, model, index

- Runs index in-memory

- Run containers in serverless engine

- No database needed

- Low latencies

- Easy scaling

- Indexing = Redeployment

//

Future perspectives

- Produce data for

- Spellings / (de)compound

- Addressing multi-language

- Synonym relations

- Evaluating zero-results

- Iteration 1: Manual evaluation followed by AB testing

- Iteration 2:

- Use similar queries

- Ensemble technique using OpenAI

- Done

✓ Main implementations

✓ Infrastructure integration

✓ Setup of different training options

✓ CI/CD for models

THANK YOU!

Ruchi Juneja
Sr. Data Scientist

MediaMarkt-Saturn

Dr. Johannes Peter
Principal Search Consultant

	Slide 1: Vectorizing consumer electronic goods
	Slide 3: UncoveringThe Problem Statement
	Slide 4: Problem analysis of zero-results
	Slide 5: How vector search could help
	Slide 7: First iteration
	Slide 8: Offline Evaluation
	Slide 10: Fine-tuning public models
	Slide 11: Limitations
	Slide 12
	Slide 13: Product descriptions from user behaviour
	Slide 14: User behaviour based product descriptions
	Slide 15: Muhamed et al. (2023)
	Slide 16: Training from scratch
	Slide 17: How things can go wrong...
	Slide 18: Fine-tuning with online negatives (Schroff et al., 2015)
	Slide 19
	Slide 20: Integrating business logic and user behaviour for product descriptions
	Slide 21: Leanest way of running vector search in production
	Slide 22: Future perspectives
	Slide 23: THANK YOU!

